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a b s t r a c t

This paper presents experimental data, an artificial neural network (ANN) model and a mathematical
model (MM) for a laboratory scale electrodialysis (ED) cell. The aim was to predict separation percent
(SP) of Pb2+ ions as a function of concentration, temperature, flow rate and voltage. The MM started from
a differential equation of steady state mass balance. Neglecting resistances of ion exchange membranes
compared with resistances of bulk solutions in dilute and concentrate compartments and deriving a
relation for solution resistance as a function of operating parameters, the final one-parameter model was
eural network
athematical modeling
astewater treatment
etal ions

obtained. The applied ANN was a multilayer perceptron (MLP) network with two hidden layers. The fast
Levenberg–Marquardt (LM) optimization technique was employed for training the ANN. MM and ANN
were able to predict the performance of ED desalination with correlation coefficients of 0.97 and 0.99,
respectively. Comparing MM and ANN model results, it was found that ANN model is more capable than
MM to predict nonlinear behavior of ED process. However, MM is more efficient at higher feed flow rates
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. Introduction

Many industrial wastewaters produced by metal plating, metal
nishing, mining, automotive, aerospace, battery and general
hemical plants, often contain high concentration of heavy met-
ls [1]. Lead is a highly toxic heavy metal. It impairs hemoglobin
ynthesis, particularly in children, and may cause neurological dis-
rders. Lead is found in water and air. Wastes that include lead are
ound in paints, pipes, batteries and in some petrol types [2].

Processes developed to remove heavy metals such as lead from
astewaters include chemical precipitation [3], coagulation, com-
lexing, solvent extraction [4–6], ion exchange [7,8], biosorption
9–13], electro-membrane processes [14–16] and adsorption on
olid surfaces. These processes have some inherent shortcomings
uch as requiring a large area of land, a sludge dewatering facility,
killful operators, multiple basin configurations and high capital

nd regeneration costs of activated carbon and ion-exchange resins
17].

Membranes can also be used to obtain effluents without metallic
ontaminants. The main disadvantage of membrane processes for
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res and feed concentrations. ANN is found out to be an efficient tool to
sfer mechanism in an electrical field.

© 2008 Elsevier B.V. All rights reserved.

reatment of effluents with heavy metals is ionic size of dissolved
etallic salts. These ions, as hydrated ions or as low molecular
eight complexes, pass easily through all membranes with the

xception of reverse osmosis membranes. However, reverse osmo-
is membranes are not selective, because interesting metallic ions
re retained together with alkaline and alkaline–earth ions [1].

ED is an electrochemical process for separation of ions across
harged membranes from one solution to another under the influ-
nce of an electrical potential difference used as a driving force.
his process has been widely used for production of drinking and
rocess water from brackish water and seawater, treatment of

ndustrial effluents, recovery of useful materials from effluents and
alt production. The basic principles and applications of ED were
eviewed in the literature [18–20].

ANN utilizes interconnected mathematical nodes or neurons to
orm a network that can model complex functional relationships
21]. Its development started in the 1940s to help cognitive scien-
ists to understand the complexity of the nervous system. It has
een evolved steadily and was adopted in many areas of science.

asically, ANNs are numerical structures inspired by the learn-

ng process in the human brain. They are constructed and used as
lternative mathematical tools to solve a diversity of problems in
he fields of system identification, forecasting, pattern recognition,
lassification, process control and many others [22].

http://www.sciencedirect.com/science/journal/13858947
mailto:torajmohammadi@iust.ac.ir
dx.doi.org/10.1016/j.cej.2008.02.023
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Nomenclature

a ion hydrodynamic radius, input data in ANN
Am effective area of ion exchange membrane (m2)
b bias or nodes internal threshold
C concentration (kmol m−3)
D diffusivity (m2 s−1)
e electronic charge (C)
E electrical potential (V)
f function
F Faraday constant (C kmol−1)
h thickness of dilute compartment (m)
i current density (A m−2)
I current intensity (A)
J molar flux (kmol m−2 s−1)
k mass transfer constant (m s−1)
K Kohlrausch coefficient (S m2 kmol−1 M−0.5)
l flow length in channel (m)
MSE mean squared error
N number of cell pairs, number of validation and train-

ing data
q constant
Q flow rate (m3 s−1)
R resistance (�)
SP separation percent (%)
T temperature (K)
u flow velocity (m s−1)
w width of ED cell (m), weight factor in ANN
x coordinate (m)
x′ constant (C2 s kmol−1 kg−1)
y′ constant (S m2 kmol−1 M−0.5)
z valence
z′ constant (M−0.5)

Greek letters
�M molar conductivity (S m2 kmol−1)
�o

M limiting molar conductivity (S m2 kmol−1)
˛ constant (m4/3 s2/3 kg2/3 A kmol−1 K−2/3)
ˇ constant (kmol K2/3 s1/3 m−7/3 kg−2/3 A−1)
ε electric permittivity (C2 J−1 m−1)
ε0 permittivity in free space (C2 J−1 m−1)
εr relative permittivity
� ′ constant (s m−1)
� constant (s m−1)
� current efficiency
� viscosity (kg m−1 s−1)
� density (kg m−3)
	 conductivity (S m−1)

 molar conductivity of ions (S m2 kmol−1)
� stochiometric constant
� mobility of ions (m2 s−1 V−1)
ω, � and ı constant
 Debye–Huckel–Onsager coefficient (M−0.5)
� Debye–Huckel–Onsager coefficient

(S m2 kmol−1 M−0.5)
� universal gas constant (J kmol−1 K−1)

Subscripts
cal calculated
d dilute compartment
exp experimental
m membrane
M molar
± cation or anion
0 initial condition
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In recent years, ANNs have been used as a powerful modeling
ool in various membrane processes such as membrane filtra-
ion (FT) [23,24], microfiltration (MF) [25–29], ultrafiltration (UF)
30–45], nanofiltration (NF) [46–49], reverse osmosis (RO) [50–55],
as separation (GS) [56,57], membrane bioreactors (MBRs) [58,59]
nd fuel cells (FC) [60,61]. Key features of previous studies are sum-
arized in Table 1. According to this table, it can be concluded

hat:

1. RO and MF were the earliest membrane processes modeled and
simulated by ANN.

. Researchers have recently focused on modeling of GS and MBRs
using ANN. However, ongoing works have also been accom-
plished on traditional membrane processes, lately.

. ANN modeling of UF was most frequently observed in the liter-
ature.

. The most popular form of ANN in use was feed forward neural
network (FFNN) modeling.

. Of FFNN, MLP and radial basis function (RBF) were by far the
most widely used in membrane processes.

. Almost all the researchers applied back propagation (BP) training
method for their ANN.

7. RO and NF water desalination processes were modeled by ANN
previously.

. No record for modeling of ED desalination by ANN was found in
the literature.

The objective of this paper is to compare the SP values of lead
ons predicted by MLP neural network model with those of MM and
xperimental data. ANN model was found out to be more capable
o predict the nonlinear behavior of an ED process than MM.

. ANN theory

ANN is an information processing system that is inspired by the
ay such as biological nervous systems e.g. brain. The objective of
neural network is to compute output values from input values by

ome internal calculations [31]. The basic component of a neural
etwork is the neuron, also called “node”. Fig. 1 illustrates a single
ode of a neural network.

Inputs are represented by a1, a2 and an, and the output by Oj.
here can be many input signals to a node. The node manipulates
hese inputs to give a single output signal [62].

The valuesw1j,w2j, and wnj , are weight factors associated with
he inputs to the node. Weights are adaptive coefficients within

he network that determine the intensity of the input signal. Every
nput (a1, a2, . . ., an) is multiplied by its corresponding weight factor
w1j,w2j, . . . ,wnj), and the node uses summation of these weighted
nputs (w1ja1,w2ja2, . . . ,wnjan) to estimate an output signal using
transfer function.

Fig. 1. Single node anatomy.
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Table 1
Summary of researchers’ studies in modeling of membrane processes by ANN

Reference Year Membrane
process

ANN type Training method ANN application

Dornier et al. [25] 1995 MF FFNNa–MLPb SLc–BPd Modeling of crossflow MF
Niemi et al. [50] 1995 RO FFNN–MLP SL–BP Simulation of RO membrane separation
Al-shayji and Liu [53,54] 1997, 2002 RO FFNN–MLP SL–BP Modeling and optimization of large-scale commercial

water desalination plants
Bowen et al. [32,33,36] 1998, 2001 UF FFNN–MLP SL–BP Prediction of the rate of crossflow membrane UF of

colloids
Delgrange et al. [30,31] 1998–2002 UF FFNN–MLP SL–BP–QNLAe Modeling of UF fouling, prediction of UF

transmembrane pressure in drinking water production
Hamachi et al. [27] 1999 MF RNf USLg Modeling of crossflow MF of bentonite suspension
Teodosiu et al. [34] 2000 UF FFNN–MLP SL–BP Predicting the time dependence of flux evolution in UF
Bowen et al. 2002 NF FFNN–MLP CGMh–SCGi Predicting salt rejections at NF
Jafar and Zilouchian [55] 2001 RO FFNN–MLP and RBFj SL–BP Modeling of an RO water desalination
Cabassud et al. [38] 2002 UF RN USL Predictive control algorithm to improve the

productivity of an UF
Bhattacharjee and Singh [37] 2002 UF FFNN–MLP SL–BP Modeling of a continuous stirred UF process
Razavi et al. [40,41] 2003 UF FFNN–MLP SL–BP Prediction of milk UF performance
Shetty et al. [47] 2003 NF FFNN–MLP SL–BP–LMTk Prediction of contaminant removal and membrane

fouling during municipal drinking water NF
Lee et al. [60] 2004 FC FFNN–MLP SL–BP Modeling of polymer electrolyte membrane FC

performance
Aydiner et al. [28] 2005 MF FFNN–MLP SL–BP Modeling of flux decline in crossflow MF
Chellam [29] 2005 MF FFNN–MLP SL–BP–LMT Modeling of transient crossflow MF of polydispersed

suspensions
Zhao et al. [51] 2005 RO and NF FFNN–MLP and NRBFl SL–BP Predicting RO/NF water quality
Abbas and Al-Bastaki [52] 2005 RO FFNN–MLP SL–BP–LMT Modeling of an RO water desalination
Rai et al. [43] 2005 UF FFNN–MLP SL–BP Modeling batch UF of synthetic fruit juice and mosambi

juice
Geissler et al. [58] 2005 MBR SRNm (ENn) SL–BP Modeling of capillary modules in MBR
Ou et al. [61] 2005 FC FFNN–MLP and RBF SL–BP Modeling of proton exchange membranes
Chen and Kim [24] 2006 FT FFNN–MLP and RBF SL–BP–LMT Prediction of permeate flux decline in crossflow

membrane FT
Cinar et al. [59] 2006 MBR CFNNo–MLP SL–BP Modeling of submerged MBR treating cheese whey

wastewater
Curcio et al. [45] 2006 UF FFNN–MLP SL–BP Reduction and control of flux decline in cross-flow UF
Wang et al. [57] 2006 GS FFNN–RBF SL–BP Modeling of hydrogen recovery from refinery gases
Sahoo and Ray [23] 2006 FT FFNN–RBF SL–BP–LMT Prediction of flux decline in crossflow membranes
Shahsavand et al. [56] 2007 GS FFNN–MLP and RBF SL–BP Modeling the separation of CO2 from CH4 using hollow

fiber module
Al-Zoubi et al. [49] 2007 NF FFNN–MLP SL–BP Modeling the rejection of sulphate and potassium salts

by NF

a Feed forward neural network.
b Multilayer perceptron.
c Supervised learning.
d Back propagation.
e Quasi newton learning algorithm.
f Recurrent network.
g Unsupervised learning.
h Conjugate gradient method.
i Scaled conjugate gradient.
j Radial basis function.
k Levenberg–Marquardt technique.

a
n

u

o
T
e
f

•

•

•

l Normalized radial basis function.
m Simple recurrent network.
n Elman network.
o Cascade forward neural network.

The other input to the node, bj, is the node’s internal threshold,
lso called bias. This is a randomly chosen value that governs the
ode’s net input through the following equation:

i =
n∑
i=1

(wijai) − bj (1)
Node’s output is determined using a mathematical operation
n the node’s net input. This operation is called a transfer function.
he transfer function can transform the node’s net input in a lin-
ar or nonlinear manner. Three types of commonly used transfer
unctions are as follows:
Sigmoid transfer function

f (x) = 1
1 + e−x , 0 ≤ f (x) ≤ 1 (2)

Hyperbolic tangent transfer function

f (x) = tanh(x) = ex − e−x

ex + e−x , −1 ≤ f (x) ≤ 1 (3)

Linear transfer function
f (x) = x, −∞ ≤ f (x) ≤ +∞ (4)

The neuron’s output, Oj, is found by performing one of these
functions on the neuron’s net input, uj. Neural networks are made
of several neurons that perform in parallel or in sequence.



434 M. Sadrzadeh et al. / Chemical Engineer

c
s
p
t
a
a
a

3

i
m

u

c

J

w
e
c

f

u

o
fl

J

w
a
t
a
c

�

k

I
m
o

I

w
m
f
h
f
t

R

w

x

t
m

At x = 0, C = C0

T
E

(
(

(

(

(

(

(

P

Fig. 2. Differential element of the dilute compartment.

The weight factors and thresholds are adjusted in training pro-
ess. Training is the process by which the weights are adjusted
ystematically so that the network can predict the correct out-
uts for a given set of inputs. There are many different types of
raining algorithms. One of the most common classes of training
lgorithms for FFNNs is called BP [62,63]. Mathematical aspects of
ll training algorithms are comprehensively described in the liter-
ture [64–67].

. Mathematical modeling

A differential element of the dilute compartment is illustrated
n Fig. 2. The steady state mass balance of lead ions in the compart-

ent is as follows:

hwCx − uhwCx+dx = JMw dx (5)

Also, the molar flux through the dilute compartment in term of
urrent density is as follows:

M = � i = � dI
(6)
F F dAm

here Am = lw, l, h and w are channel dimensions, � is current
fficiency, F is Faraday constant and i is current density. Assuming
onstant concentration in the cell compartment (dI/dAm = I/Am), the

�

able 2
lectrochemistry rules to find the functionality of electrolyte resistance (R)

1) Electrolyte resistance R = h
	A

3) Molar conductivity �M =�o
M − Kc0.5

5) Ion molar conductivity 
± = z±FD±
�T

7) Ion mobilityb �± = z±e
6��a±

9) Debye–Huckel–Onsager coefficient � = z2eF2

3��

(
2
ε�T

)0.5

11) Electric permittivityc ε = εrε0

13) Constantd q = 2ωz+z−(
++
−)
(z++z−)(z+
−+z−
+)

a Molar conductivity is the limit of zero concentration of an electrolyte. �+ and �− are
bSO4). z+ and z− are cation and anion valances. For n–n electrolytes such as PbSO4 z+ = z
b a in this equation is the ion hydrodynamic radius.
c ε0 is the vacuum permittivity (8.854 × 10−12 C2 J−1 m−1).
d For 1–1, 2–2 and n–n electrolytes ω = 0.5.
e q = 0.586 and 2.343 for 1–1 electrolyte and 2–2 electrolyte, respectively.
ing Journal 144 (2008) 431–441

ollowing differential equation is obtained [68]:

hdc = − I

Am

�

F
dx (7)

In order to be able to use integrate form of this equation with
perational variables, � needs to be verified. At any point, molar
ux can be written as follows:

M = k(Cbulk − Ci) = k�C (8)

here Cbulk and Ci are concentrations at the bulk of dilute stream
nd at the membrane surface, respectively. Due to very small dis-
ance between two membranes,�C can be assumed to be constant
long the membrane surface [68]. Hence, Eqs. (6) and (8) can be
ombined as follows:

= �cFAm

I
k = � ′k (9)

According to the literature, k is calculated as follows [69]:

= 3.30D2/3
(
Qd

hAdl

)1/3

(10)

n ED, the basic relations between current (I), effective electrical
otive force (E) and system resistance (R) can be described by

hm’s law:

= E

NR
(11)

here N is the number of cells which is 1 in this study. Neglecting
embranes resistances, solution resistance can be expressed as a

unction of concentration and temperature (f(c,T)). Table 2 shows
ow electrochemistry rules were applied sequentially to find this

unctionality [70]. Using equations in this table, the following equa-
ion can be derived:

= h

CA(x′ − y′C0.5 − x′z′C0.5)
(12)

here

′ = eFz2

6��

(
1
a+

+ 1
a−

)
, y′ = 3.30

�(εrT)0.5
and z′ = 3281587

(εrT)1.5
.

Combination of Eqs. (7)–(12) and integrating both sides using
he following boundary condition result in an expression for the

odel parameter (�):
= − Q
2/3
d

ET2/3

h5/3

(lw)2/3

(
6�a
e�

)2/3
(F�)5/3

∫ C

C0

f (C, T) dc (13)

(2) Electrolyte conductivity 	 =�Mc
(4) Limiting molar conductivitya �o

M = �+
+ + �−
−

(6) Diffusion coefficient D± = �±�T
z±F

(8) Kohlrausch coefficient K = � + �o
m

(10) Debye–Huckel–Onsager coefficient  = qz3eF2

24�ε�T
(

2
ε�T

)0.5

(12) Relative permittivity εr = 185.765 − 0.35963T

(14) Constante ω = z+z−(
++
−)
(z++z−)(z+
++z−
−)

the numbers of cations and anions per an electrolyte molecule (e.g. �+ =�− = 1 for
− = z.
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Using a simple change of variable, Eq. (13) can be written as a
unction of SP.

= ˛× ˇ (14)

here

= −Q
2/3
d �5/3

C0ET2/3
ln

[
(ı+ �)

√
1 − SP

ı+ �√
1 − SP

]
(15)

nd

= 75
h5/3

(lw)2/3

(
6�a
e�

)2/3
F5/3 (16)

n Eq. (15), � = −
√
C0/T(0.38 + 125/T) and ı= 0.026. SP is also

efined as:

P = C0 − C
C0

× 100 (17)

here C0 and C are feed and dilute concentrations, respectively.
he following equation was fitted for ˛ as a function of operating
arameters using experimental data:

= 1

−1.5 × 106/E + 1.15 × 107C155/T
0 /E0.001 + 3 × 1017Q2.5

d

(18)

ith the aid of Eqs. (14)–(18) and using MATLAB programming
oftware, the model gives SP for various temperatures, feed con-
entrations, flow rates and voltages. Detailed description of the
eveloped model was presented elsewhere [70,71].

. Materials & method

.1. Materials

An analytical grade salt (99.9% lead nitrate supplied by Merck)
nd deionized water were used in all experiments to produce solu-
ions with wastewater qualities. The purpose of these experiments
as to study the effects of voltage, flow rate, temperature and feed

oncentration on the ED cell performance.

.2. Cell and membranes

The ED cell was packed with a pair of cation and anion exchange
embranes (CEM and AEM) and a pair of platinum electrodes

anode and cathode). Both electrodes were made of pure platinum.
rea of each electrode was 4.2 mm × 4.2 mm. Thickness of dilution

ell (center) is 4 mm and thickness of each concentrate cell (left
nd right) was 3 mm. Schematic view of the applied ED cell is pre-
ented in Fig. 3. Lead nitrate solution is introduced into the three
ompartments. When a DC potential is applied between two elec-
rodes, positively charged lead ions move toward the cathode, pass

Fig. 3. Schematic view of an ED cell.
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hrough the negatively charged CEM and are retained by the pos-
tively charged AEM. On the other hand, nitrate ions move toward
he anode, pass through the AEM and are retained by the CEM.
t the end, ion concentration increases in the side compartments
ith a simultaneous decrease of ion concentration in the middle

ompartments.
AR204SXR412 and CR67, MK111 anion and cation exchange

embranes supplied by Arak petrochemical complex and made
y Ionics incorporated were used in all experiments. Effective
rea of each membrane was 6 mm × 6.5 mm. IECs of anion and
ation exchange membranes were 2.8 and 2.4 meq/g dry mem-
rane, respectively.

.3. ED setup

ED setup consists of a feed tank (TK-01) where wastewater is
tored, two pumps (P-01 and P-02), a rectifier (DC-01) and two
lobe valves (GB-01 and GB-02) to control feed flow rate in three
ompartments of a self designed ED cell. A simplified diagram of
he setup is shown in Fig. 4.

.4. Experimental design

Many parameters affect performance of the ED cell. Accord-
ng to our previous studies [2,20,68,72], four parameters were
elected. It is believed that they have the greatest effect on SP:
eed concentration, dilute solution flow rate, voltage and feed
emperature. Four factors with their levels were studied based on
he full factorial design:

Temperature (T): 25, 40 and 60 ◦C.
Concentration (C): 100, 500 and 1000 ppm.
Flow rate (F): 0.07, 0.7 and 1.2 mL/s.
Voltage (V): 10, 20 and 30 V.

Each experiment was lasted for about 15 min to reach steady
tate condition. Three samples were taken every 5 min and the
verage value was reported.

.5. Analytical method

Concentration of cations (Pb2+) only in the dilute compartment
as measured at various operating conditions. In all experiments,

tomic absorption (Shimadzu, AA-670) was used to measure the
mount of lead ions in water.

.6. ANN modeling of ED
ANN input parameters were carefully selected to only include
hysically meaningful and easily to measurable membrane oper-
tional and feed water quality variables as cell voltage and feed
ow rate, temperature and concentration. Totally 81 experimental

Fig. 4. A simplified diagram of the ED cell.
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Table 3
Statistical criteria for evaluation of ANN model

Criterion Training data Validation data Testing data Total ANN

MSE 0.019 0.260 0.444 0.102
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ata are collected and used for ANN modeling of ED for train-
ng/validation/testing subsets.

In this work, feed forward multilayer neural network with two
idden layers was employed for modeling of ED. It was used to
ransform input data (concentration, temperature, flow rate and
oltage) into a desired response (SP). With the aid of hidden lay-
rs, it can approximate virtually any input–output map. The well
rained neural network can be used for prediction purpose. Fig. 5
llustrates the structure of the ANN used for modeling of ED.

. Results and discussion

.1. ANN model

Five important aspects that must be determined in design pro-
edure of ANN are as follows:

Data distribution in three subsets (training, validation and test-
ing).
Selection of neurons’ transfer functions.
Selection of ANN structure.
Selection of training algorithm and its parameters.
Selection of initial weights.
Testing the ANN generalization.

.1.1. Training, validation and testing data
As mentioned, MLP feed forward model was used in this study.

he total 81 experimental data were randomly divided into three
ubsets of training, validation and testing for developing ANN
odel. Distribution of these data is shown in Fig. 6. Fifty training

ata were used to update the network weights and biases. In order
o check the generality of network prediction and to prevent the
ata overfitting 21, validation data were applied. In the first few
pochs of training, errors of both training and validation data are
educed. After several epochs, the error of training data decreases
hile that of validation data increases. As a result, the network is

vertrained and its generality decreases. Hence, the training pro-
ess must be continued until the validation data error decreases.
esting data set is used to test the generality of trained network via
nseen patterns (experimental data which are not used in training
rocedure). The network generalizes well when it sensibly inter-
olates these new patterns. Termination of training procedure at a
roper time, i.e. when the minimum validation error is achieved,
esults in a generalized predictor network.
.1.2. Training algorithm and transfer function
The MLP networks were created in the neural network toolbox

f Matlab with newff function. Performances of different train-
ng algorithms were studied for a specified network with four

p
t
o
I
t

Fig. 5. Structure of a typical ANN
MSE 0.137 0.509 0.666 0.319
0.999 0.999 0.999 0.999

2 0.999 0.998 0.998 0.999
SRE 0.004 0.001 0.011 0.004

ayers (1 input layer/2 hidden layer/1 output layer). Due to the
onvergence speed and the performance of network to find better
olution, the Levenberg–Marquardt training method was selected
s a proper training algorithm in agreement with the literature
23,24,29,46,47,52,64].

Another important factor in ANN design is the type of transfer
unctions. ANNs owe their nonlinear capability to the use of non-
inear transfer functions [48]. Different transfer functions can be
sed for neurons in the different layers. Different transfer func-
ions were examined in each layer, separately and with respect to
he mean squared error (MSE) of testing data, the proper transfer
unctions were chosen. MSE is calculated as follows:

SE =
∑

N(SPcal − SPexp)2

N
(19)

here subscripts cal and exp denote calculated and experimental
alues of SP, respectively. N is the number of validation and training
ata.

The most widely used criteria including MSE, root mean square
rror (RMSE), correlation coefficient (R), coefficient of determi-
ation (R2) and mean squared relative error (MSRE) for training,
alidation and testing data sets are presented in Table 3. RMSE is
he square root of MSE presented in Eq. (19). In probability theory
nd statistics, R indicates the strength and direction of a linear rela-
ionship between two variables. In general statistical usage, R refers
o the departure of two variables from independence. A number
f different coefficients are used for different situations. The best
nown is the Pearson product-moment correlation coefficient as
ollows:

=
∑

N(SPcal − SPcal,ave)(SPexp − SPexp,ave)√∑
N(SPcal − SPcal,ave)

√∑
N(SPexp − SPexp,ave)

R2 can have only positive values ranging from R2 = +1.0 for a
erfect correlation (positive or negative) down to R2 = 0.0 for a com-

lete absence of correlation. The advantage of R is that it provides
he positive or negative direction of the correlation. The advantage
f R2 is that it provides a measure of the strength of the correlation.
t can be said that R2 represents the proportion of the data that is
he closest to the line of best fit.

used for modeling of ED.
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networks is selection of the initial weights. In this work,
Nguyen–Widrow algorithm was used to initialize the weights of
layers and biases. This algorithm chooses values in order to dis-
tribute the active region of each neuron in the layer approximately
Fig. 6. Distribution of (a) training, (b) validation and (c) testing data subsets.

Another measure of fit is MSRE which is calculated by the fol-
owing equation:

SRE = 1 ∑(
SPcal − SPexp

)2

(20)

N

N
SPexp

ccording to data presented in Table 3, excellent fitness of ANN
redicted values with experimental data was confirmed. F
ing Journal 144 (2008) 431–441 437

Among different transfer functions available in Matlab, log
igmoid function was selected for all neurons due to its better pre-
iction performance than other transfer functions. The log sigmoid
unction is bounded between 0 and 1, so the input and output data
hould be normalized to the same range as the transfer function
sed. In other words, the logarithmic sigmoid transfer function
ives scaled outputs (SP) in this range (0–1).

.1.3. ANN structure
Network structure has significant effects on the predicted

esults. The number of input and output nodes, as mentioned
efore, is equivalent to the number of input and output data, respec-
ively (4 and 1 in this work). However, the optimal number of hidden
ayers and the optimal number of nodes in each layer, are case
ependent and there is no straightforward method for determi-
ation of them. Hornik showed that MLP feed forward networks
ith one hidden layer and sufficiently large neurons can map any

nput to each output to an arbitrary degree of accuracy [73]. How-
ver, Flood and Kartam reported that many functions are difficult
o approximate well with one hidden layer [74]. They revealed
hat use of more than one hidden layer provides greater flexibility
nd enables the approximation of complex functions with fewer
eurons. Baughman and Liu found out that adding a second hid-
en layer improves the network prediction capability significantly
ithout having any detrimental effects on the generalization of the

esting data set [64]. However, adding a third hidden layer results
n a prediction capability similar to that of two hidden layer net-

ork, but it requires longer training times due to its more complex
tructure.

In this study, structures including 1–10 neurons in the first hid-
en layer and 1–10 neurons in the second hidden layer as well as
tructures with single hidden layer of 1–10 neurons were investi-
ated. Among them 4:5:4:1 network (2 hidden layers with 5 and 4
eurons in the first and second layer, respectively), as illustrated in
ig. 5, showed the minimum MSE, R and MSRE for validation data
et (0.260, 0.999 and 0.001, respectively) and therefore has been
elected as the proper structure.

Another important factor that affects the performance of
ig. 7. Performance of 4:5:4:1 network at the minimum MSE of validation data.
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venly across the layer’s input space [63]. The wrong choice of ini-
ial weights can lead to the local minimum values and therefore
ad performance of the networks. In order to prevent these phe-
omena, 20 runs were performed using different random values of

nitial weights and the best trained network was selected.
In Fig. 7, the experimental results versus neural network predic-

ions of the selected network (4:5:4:1) is plotted at the minimum
SE of validation data. According to this figure, excellent perfor-
ance of the 4:5:4:1 network is confirmed.
.1.4. ANN generalization
The selected network was used to predict SP for different

nputs in the domain of training data. In Fig. 8, SP is plotted
ersus operating parameters in 3D plots. As can be seen, the

t
s
r

a

ig. 8. Generalization performances of optimal ANN, effects of (a) flow rate and temper
oltage and temperature at 500 ppm and 0.07 mL/s, (d) voltage and flow rate at 500 ppm a
nd temperature at 0.07 mL/s and 30 V on SP.
ing Journal 144 (2008) 431–441

eneralization performances of 4:5:4:1 network, show no oscil-
ations and this confirms an excellent prediction performance of
NN. ANN predictions can also be used for optimization pur-
oses.

.2. MM

In order to assess the reliability of MM, the calculated results
ere compared with the measured experimental data. MM predic-
ion values and experimental data are depicted in Fig. 9. As can be
een in Fig. 9a, at low and medium voltages (10 < V < 20) and all flow
ates, MM offers reasonable results.

According to Fig. 9b, it is found that there is an acceptable
greement between the calculated results and experimental data

ature at 500 ppm and 30 V, (b) flow rate and concentration at 30 V and 60 ◦C, (c)
nd 60 ◦C, (e) voltage and concentration at 0.07 mL/s and 60 ◦C and (f) concentration
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F age o
c , T = 6

a
a

M
n

F
C

ig. 9. MM prediction values compared with experimental data, (a) effect of volt
oncentration, both plotted at optimum levels of two other factors, i.e. C = 1000 ppm
t lower temperatures and concentrations (100 ppm < C < 500 ppm
nd 25 ◦C < T < 40 ◦C).

It should be noted that, although experimental values and
M curves do not completely coincide with each other (sig-

ificant deviations are observed in some cases), they properly

d
t
i
c
c

ig. 10. Comparing MM, ANN and experimental data, effect of (a) flow rate, (b) voltage,
= 500 ppm, T = 40 ◦C, Q = 0.7 mL/s and V = 20 V.
n SP at different flow rates and (b) effect of temperature on SP at different feed
0 ◦C, Q = 0.07 mL/s and V = 30 V.
escribe the trend of the behavior. Obviously, it can be said
hat MM is of great importance because (1) it satisfies exper-
mental data to a moderately sufficient degree of correlation
oefficient (0.97), (2) it can be used for different scale of ED
ells and ions, (3) it can be easily used to calculate SP at

(c) concentration and (d) temperature on SP at medium levels of other factors, i.e.
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Table 4
Comparing of the performance of MM and ANN model

Criterion MM ANN

MSE 38.605 0.102
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MSE 6.213 0.319
0.975 0.999

2 0.950 0.999
SRE 23.949 0.004

ifferent operational conditions, (4) it can be used for scale
p.

.3. Comparing MM and ANN

MM, ANN modeling predictions and experimental data were
uxtaposed in Fig. 10. As can be seen, ANN can predict SP of ED cell
t various operating conditions much better than MM. Better per-
ormance of ANN model was confirmed by comparing MSE, RMSE,
, R2 and MSRE of two models in Table 4.

Excellent agreement between ANN results and experimental
ata indicates the capability of ANN to model the complicated

on transfer mechanism in an electrical field. Fig. 10b–d confirms
hat MM tends to describe the nonlinear behavior of ED process in
lmost a linear manner.

According to Fig. 10, increasing voltage, concentration and tem-
erature increase SP values. It is obvious due to the fact that

ncreasing temperature and concentration decreases the solution
esistance, while increasing voltage increases the driving force. At
igher flow rates, SP values decrease because the more flow rate
eans the less residence time, and thus, ions that are between the
embranes do not have enough time to transfer through them.
Taking a closer look to Fig. 10, it is found that the differences

etween SP values regarding medium and high levels of parameters
re negligible comparing to those regarding low and medium levels.
.e., at higher values of parameters, almost constant values of SP are
chieved.

. Conclusion

MM and ANN modeling were employed for prediction of ED; a
astewater treatment process. A multilayer network (FFNN–MLP),
ith two hidden layers (4:5:4:1), was applied to predict SP of Pb2+

ons in the dilute compartment of a laboratory scale ED cell. The MM
as derived using an ED channel mass balance and its parameter
as calculated using the experimental data of lead ions.

ANN successfully tracked the nonlinear behavior of SP versus
emperature, voltage, concentration and flow rate with MSE, R and

SRE of 0.102, 0.999 and 0.004, respectively.
The developed MM makes it possible to predict SP of an ED cell

t different operating conditions and ions as well as different cell
imensions. It means that the MM expresses the actual behavior of
n ED system in spite of great deviations from experimental data
bserved in some cases (MSE, R and MSRE of 38.605, 0.975 and
3.949).

ANN modeling technique was found out to have many favorable
eatures such as efficiency, generalization and simplicity, which

ake it an attractive choice for modeling of complex systems, such
s wastewater treatment processes.
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